Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis.
نویسندگان
چکیده
Ultraviolet B radiation (UV-B, 290-315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-red pulse, or 2.5 h of continuous R caused very little cotyledon opening. The enhancing effect of UV-B increased with fluence rate up to approximately 7.58 micromol m(-2) s(-1); at higher fluence rates the response to UV-B was greatly reduced. The phyA, phyA cry1, and cry1 cry2 mutants behaved like the wild type when exposed to UV-B followed by an R pulse. In contrast, phyB, phyB cry1, and phyB phyA mutants failed to open the cotyledons. Thus, phytochrome B was required for the cotyledon opening response to UV-B --> R treatments, whereas phytochrome A and cryptochromes 1 and 2 were not necessary under the conditions of our experiments. The enhancing effect of low doses of UV-B on cotyledon opening in uvr1 uvr2 and uvr1 uvr3 mutants, deficient in DNA repair, was similar to that found in the wild type, suggesting that this effect of UV-B was not elicited by signals derived from UV-B-induced DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts). We conclude that low doses of UV-B, perceived by a receptor system different from phytochromes, cryptochromes, or DNA, enhance a de-etiolation response that is induced by active phytochrome B.
منابع مشابه
Phytochrome A Regulates Red-Light lnduction of Phototropic Enhancement
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis th...
متن کاملThe molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation.
Ultraviolet-B (UV-B) radiation present in sunlight is an important trigger of photomorphogenic acclimation and stress responses in sessile land plants. Although numerous moss species grow in unshaded habitats, our understanding of their UV-B responses is very limited. The genome of the model moss Physcomitrella patens, which grows in sun-exposed open areas, encodes signaling and metabolic compo...
متن کاملLight-Dependent Degradation of PIF3 by SCFEBF1/2 Promotes a Photomorphogenic Response in Arabidopsis
Plant seedlings emerging from darkness into the light environment undergo photomorphogenesis, which enables autotrophic growth with optimized morphology and physiology. During this transition, plants must rapidly remove photomorphogenic repressors accumulated in the dark. Among them is PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor promoting hypocotyl growth. Here we report...
متن کاملRED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis.
Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessary for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic rever...
متن کاملREDI 1s Necessary for Phytochrome B-Mediated Red Light-Specific Signal Transduction in Arabidopsis
Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessaty for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 126 2 شماره
صفحات -
تاریخ انتشار 2001